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Abstract. The full linear problem of the scattering of water waves by an array of N bottom-mounted vertical 
circular cylinders situated in a channel of constant depth and width is solved using the method of multipoles. 
A simple formula is derived for the velocity potential in the vicinity of a cylinder, and in particular on the 
cylinder surfaces, which allows hydrodynamic quantities such as forces to be easily evaluated. The simplicity 
of the solution makes the evaluation of quantities of interest straightforward and extensive results are given. An 
approximate solution for the forces on the cylinders, based on the assumption that the wavelength of the incident 
wave is long compared with the cylinder radii, is also given, and this is compared with results from the 'exact' 
linear solution. 

1. Introduction 

Experiments to determine the hydrodynamic forces on offshore structures are often performed 
in wave tanks and the results used as approximations to the open-sea values. No matter how 
wide the tank is, it is clearly important to have a good understanding of how the tank walls 
affect the results of such experiments, and a number of recent papers have addressed this 
question. 

One approach is to consider the problem for certain special geometries for which some 
analytic progress can be made. Thus, Eatock Taylor and Hung [1], Yeung and Sphaier [2, 3] 
and Thomas [4] used the method of images to solve linear radiation and scattering problems 
for a vertical circular cylinder in a channel, in some cases extending throughout the entire fluid 
depth and in others truncated. Linton and Evans [5] and Mclver and Bennett [6], hereafter 
referred to as I and II, respectively, showed how the use of a multipole method facilitates the 
solution of such problems. The use of multipoles also enabled the existence of the phenomenon 
of trapped modes near bodies in channels, previously undiscovered in the water wave context, 
to be proved (see Callan, Linton and Evans [7]). 

Many offshore structures, however, consist of not one, but a number of vertical cylindrical 
components and it is the purpose of this paper to investigate the hydrodynamic characteristics 
of such an array when it is considered fixed in the confines of a channel and in the presence 
of an incident plane wave. 

Five papers have been published recently in which problems connected with the interac- 
tion of waves and arrays of vertical circular cylinders are solved numerically. Bharatkumar, 
Mahadevan and Pranesh [8] used a Green's function approach together with the method of 
images to obtain an integral equation and thus compute pressures and first-order forces on 
pairs of  vertical circular cylinders in a channel. The same approach was used by Butler and 
Thomas [9] who also computed reflection and transmission coefficients and by Neelamani, 
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Bharatkumar, Mahadevan and Sundar [10] who compared results for a particular two-cylinder 
geometry with those from experiments. A more sophisticated technique was employed by 
Kashiwagi [11] who constructed a fully three-dimensional Green's function which automati- 
cally satisfied the channel-wall boundary conditions, thus eliminating the need to sum over all 
the image cylinders. Kashiwagi also presented results for the realistic case of four truncated 
cylinders arranged in a square, computed mean second-order drift forces and compared his 
results with experimental data. Mean drift loads on arrays of two and four cylinders extending 
throughout the water depth were also considered by Williams and Vazquez [12] using a similar 
method. 

In all the above cases the theory is applicable to cylinders of arbitrary cross-section, 
although results are only shown for the circular case. For general-shaped obstacles this 
technique is extremely useful, but its implementation is quite difficult owing to the numerical 
problems that arise. It is well known that, when the method of images is used, the evaluation 
of the Green's function is complicated by the need to evaluate slowly convergent series of 
Hankel functions and different authors have used different methods to deal with this problem. 
A particularly efficient technique is described in Yeung and Sphaier [2]. The use of a more 
sophisticated Green's function is preferable, though only if a representation can be found that 
is straightforward to compute. The forms for the fully three-dimensional Green's function 
used by Kashiwagi [11] and for the two-dimensional case by Williams and Vazquez [12] both 
have their limitations. In [11] the numerical evaluation of a double integral is required, whilst 
in [12] the singular part of the Green's function does not appear explicitly, making accurate 
calculations difficult. Alternative forms for these fundamental solutions that may provide for 
more efficient computations have been derived in Linton [13] and Linton and Evans [14], 
respectively. 

For the case of circular cylinders, however, another technique is available, that of multipole 
expansions, and this approach will be pursued here. The solution of the problem of scattering 
by an array of cylinders in a channel is found by combining the method of Linton and Evans 
[15] where the open-sea diffraction problem was solved, and techniques described in I and II 
where the problem of scattering by a single cylinder in a channel was solved. The resulting 
procedure is both fast and accurate and can be used to validate more general numerical codes as 
well as produce extensive results for hydrodynamic characteristics in this interesting problem. 

The plan of the paper is as follows. In Section 2 the multipole method is formulated, 
formulas for the multipoles themselves being given in the Appendix. A simple formula 
for the velocity potential in the vicinity of a particular cylinder is derived which leads to 
straightforward expressions for the first-order and mean second-order forces on the cylinders. 
Another advantage of the multipole technique is the fact that the far-field form of the solution 
can be obtained explicitly. This results in simple expressions for the reflection and transmission 
coefficients as well as formulas which can be used as checks to validate the results. In Section 
3 an approximate solution based on the assumption that the wavelength of the incident wave 
is large compared to the cylinder radii is derived using matched asymptotic expansions. This 
is an extension of work on the single cylinder case given in II. Extensive results are then given 
in Section 4. 

2. Multipole Formulation 

Cartesian coordinates (x, y, z) are chosen with z vertically upwards, z = - h  being the bottom 
of the channel and z = 0 the mean free surface. The channel has width 2d with the walls given 
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Figure 1. Plan view of two cylinders. 

by the planes y = +d.  We assume that there are N ( >  1) fixed vertical circular cylinders and 
use N + 1 polar coordinate systems in the (x, y)-plane: (r, 0) are centred at the origin, whilst 
(rj, Oj), j = 1 , . . . ,  N,  are centred at (xj, yj), the centre of the j th  cylinder. The various 
parameters relating to the relative positions and sizes of the cylinders are shown in Figure 1. 

Under the usual assumptions of linear water-wave theory for time-harmonic motion with 
angular frequency w we write 

= Re{¢(x, y)f(z)e-i~°t}, (2.1) 

where 

f ( z )  = _ i 9 A c o s h k ( z  + h) 
w cosh kh (2.2) 

and the wavenumber k is the real positive solution of the dispersion relation 

k tanh kh = w2/9 . (2.3) 

The two-dimensional potential ¢ then satisfies the Helmholtz equation 

(V 2 + k2)¢ = 0. (2.4) 

We will assume the presence of an incident plane wave of amplitude A from x = - o o  
characterized by ¢I (x, y) where 

(fiI : eikx : eikr cos 0 (2.5) 

If we define a phase factor for each cylinder, l j ,  by 

~j ~ eikxj 

then we can write 

¢I = I j e  ikr; coso, = i t  Z £ m e i m C r / 2 J m ( k r j ) c ° s m O j  • 
m--o 

(2.6) 

(2.7) 
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(Abramowitz and Stegun [16], equations (9.1.44) and (9.1.45)). Here eo = 1, whereas en = 2, 
n > l .  

The idea behind the multipole method is to construct functions (which will be denoted 
by ¢Jn, ¢~) that are singular at (xj, yj) and satisfy (2.4), together with the wall boundary 
conditions and an appropriate radiation condition. Here the index n refers to the order of the 
multipole, whereas the index j refers to the number of the cylinder. Expressions for these 
multipoles are given in the Appendix and a number of useful properties of such functions are 
derived. We then write 

N oo 

¢ = ¢, + ~_, y~  ZJn(AJn~ n + BJn¢~i), (2.8) 
j = l  n=0  

where, for convenience, the factor Z~ = J'(kaj)/H'(kaj) is introduced, Hn is used to 

denote the Hankel function H(n 1), and Sg is assumed to be zero, but is retained in the analysis. 
In what follows the scaled variables given by 

).in J j = ZJ B j (2.9) = zJna,, BJ n , 

will also be used. 
In order to apply the boundary condition on the cylinder surfaces, which is 

04) = 0 on rp p = 1, , N, (2.10) 
Or, = a,, ... 

equation (2.8) must be written solely in terms of the coordinates r ,  and 0,. This is accomplished 
using the polar coordinate expansions of the multipoles, (A.1), (A.2), (A.14) and (A.15). We 
can thus write 

oo  

¢ = E {I 'cmeimr/2Jm(krP )cOSmO, q- Hm(krP )(~pm COSta0 ,  -q- J~Prn sinmO,) 
r i m 0  

OO 

+Jr.(kr,) ~ [a~. (~.m cos m0p +Z.~r. sin'~0p) +$~.(~.r. cos m0, +~m sin m0,)] 
n=O 

N 

+Jm(krp) 
j = l  
#p 

o o  

An[(C~i JP + aZn~) costa0 p + (DJnPm + fl~im) mop] 
n----0 

+[3Jn[(EJnPm+aJ, Pm)cosmOp+(FJnPm+b~)sinmOp]}. (2.11) 

Application of the body boundary condition now leads to the coupled systems of equations 
oo 

• V,(7tpap + Bn%m) Ip£me lm~r/2 -t- APm n t- ~ . , ,  n nrn ~P p 
n = 0  

N ~x~ 
-j , ,  ~ )  + + ~ ~[&(c~.m + ;~J.(~J_~ + a~)]  = o. (2.12) 

j = l  n=O 
#,  

and 
c~ N c~ 

Z~m)+ + = BPm + ~(fi?nl~nm + BPnbPnm) + ~ ~,[AJn(DJnPrn + JP /3~(F'nJ~ ~Prn)] O, 
n=O j=l n=O 

ep (2.13) 
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p = 1 , . . . ,  N, m = 0, 1 , . . .  in both cases. When N = 1 these equations are equivalent to 
those given in II, Section 4. 

In order to evaluate the unknown complex coefficients AJ and B j ,  the above infinite 
systems must be truncated. We in fact solve the systems 

M 
~p p ~p p 

Ip£m eimlr/2 + A p + E(Anolnm + Bnanm) 
rt=O 
N M 

+ (CJnm + aura ) + + aJP)] = O, (2.14) 
j=l n=O 
#p 

and 
M N M 

E =o, (2.15) 
n = 0  3=1 n = 0  

Cp 

p = 1 , . . . , N , m  = 0 , . . . , M i n  both cases, as a single N(2M + 2) × N(2M + 2) system of 
linear algebraic equations. 

The success of the multipole method depends on whether these equations can be solved 
accurately and efficiently. The value of the truncation parameter, M,  required to achieve 
accurate results is therefore very important. It was found that a value of M = 3 was sufficient 
to give accuracy within 1% for most values of the geometrical and wave parameters. Most of 
the time used in solving the problem is spent setting up the coefficient matrix, in particular 
in evaluating the contour integrals in the definitions of aJPnm, r-'nm,l~JP aJPnm and ~Pm, n, m = 
0 , . . . ,  M, j, p = 1, . . . ,  N. For certain specific geometries computational time can be reduced 
by noting that these quantities are not all independent. For example, if considering a row of 
equally spaced cylinders on the channel centreline, we would have, from (A.10), aJ+m Lj = 
Ofl,J -1 4 = 2, N - 1, with similar results for the other quantities. 

n m  , d  " " " , 

We can now simplify the expression for ¢ by using the same idea as used in Linton and 
Evans [15]. If we substitute the equations (2.12) and (2.13) into the expression for ¢, (2.11), 
and note the geometrical restriction on the use of Graf's addition theorem, it follows that, 
p r o v i d e d  rp < Rip, Vj, 

O 0  

qS(rp, Op) = E (ZP Hm(krp) - Jm(krp))( Ap  cosmOp + B p sinmOp). ( 2 . 1 6 )  

m = 0  

This expression provides an extremely simple formula for the velocity potential, and hence 
the free-surface elevation, in the vicinity of a cylinder. The potential on the cylinder surfaces 
has a particularly simple form. Using Wronskian relations for Bessel functions, we obtain 

2i ~ APmcosmOp + BP sinmOp 
(9( ap, Op ) 7rkap "--" H~m(kap) (2.17) 

m = 0  

The first-order force on the j th  cylinder is given by an integration of the pressure (= iw¢) 
over the surface of the cylinder. The forces in the x and y directions a r e  Re{XJe -iwt } and 
Re{YJe-iwt}, respectively, where 

{ x J }  pgAajtanhkh/o2~r . {cosOj}  . 
YJ = k ¢(aj, Oj) sin Oj d03 (2.18) 
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2ipga tanh kh f A{ "~ 
= ~---ff~('-kaaj) [B~J"  (2.19) 

It is convenient to non-dimensionalize these forces with respect to the force in the direction 
of wave advance on an isolated cylinder in the open sea as derived by MacCamy and Fuchs 
[17], FJ = 4p9 A tanh k h / kZ H~ ( kaj ). We obtain 

It~l = ~ = IFjl IB~IJ" 
(2.20) 

The mean second-order drift force on the jth cylinder is given by the expression 

) fJ _ fx j + ify j = oLj IV¢l z -I¢1 z e iOj dOj, (2.21) 
rj =aj 

where aj = pgA2aj(1 + 2kh/sinh 2kh)/8, see for instance Kim and Yue [18]. The real and 
imaginary parts of f j  correspond to the drift force in the x and y directions, respectively. Note 
that these are steady forces, independent of time. 

The drift force is most easily expressed in terms of the quantities 

C j = A j m - i B  j and D J m = A ~ + i B J m  . (2.22) 

We have, from (2.17), 

i ~ CJme-im°j + Dim e-imOj 
¢(aj,Oj)- Irl~aj "-"-" H~(kaj) ' (2.23) 

m = 0  

and, from (2.16), 

( i ) V¢(aj,Oj) = 0, rrfea2 ~ mCJmeimOj--mD~e-lmOj 
r a = l  H~(kaj) (2.24) 

in polar coordinates. Substituting these expressions into (2.21), we obtain 

DnDn+l J J J J DoG 1 C~C~+l f j _  2c~j 3 3 3 ~ oo 
7r(kaj)2 HrH-- ~ HI~O ° + E 1 + .=~  \ (kay)2 ~ , , " , ,  , ,  HInH~+I HtnHn+l j 

(2.25) 

In this expression all the Hankel functions have argument kaj and an overbar denotes complex 
conjugate. 

It is well known that when an incident wave is scattered by a body in a channel, the far field 
will consist of, apart from the incident wave itself, a finite sum of outgoing propagating modes, 
the form of which can be simply determined by means of separation of variables. Using the 
notation described in the Appendix, we can define reflection and transmission coefficients Rq 
and Tq by 

~--., .  f c o s q l r y / 2 d ] - i ~ , a ~  
e i ~ : +  q:o t ,2"'~q~sinqTry/2d?e x --+ - o o  

¢ "~ ~ (cos qTry/2d] ikxtq (2.26) 
q~=oTqlsinqv:y/2d~e x-+ oo 
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This definition seems more natural than that used in Butler and Thomas [9]. 
Hence, from (2.8) and (A.19)-(A.22) we obtain 

£q 
Rq - k-~q ltsinqryj/2dJ E(AJ2nC2n(tq) + iA~n+ls2n+l(tq)) 

n----0 

t ~-c°sqTryj/2dsinqTryj/2d~j oo ] + E(iBJ2ns2n(tq) + BJn+lC2n+l(tq)) e ikxjtq (2.27)  
n = 0  

c o  

- ~ q  ~ l  [fc°sqTryj/2d~ E(AJ2nC2n(tq) - iAJ2n*182n*l(tq)) 
Tq = gOq -4- eq : L[ sinqTryj/2dJ n:O 

L~-cosqryj/2dsinqTryj/2d~j oo -. ] + y~(-iBJ2ns2n(tq) + B~n+lC2n+l(tq) ) e -ikxjtq. (2.28) 
n = 0  

In particular 

N oo l 

= ~d ~--~(-1) (A2n + (2.29) nO E n ~j i~iJn+l)eikz¢ 
j = l  n=O 

and 

N oo 

= k-~ ~ ' ( - 1 )  (A2n - iAgn+l . (2.30) To 1 + E n - j  ) e - i kx j  

j=l n=O 

The reflection and transmission coefficients are related by an equation representing the 
conservation of energy. This relation, together with others relating various hydrodynamic 
quantities of interest for channel problems, is derived in Linton and Evans [19]. In the 
notation of this paper we have 

(7" 

~(IRql  2 + [Tql 2) = 1. (2.31) 
q=0 "q 

This identity was used as a check on all the numerical results that were obtained and was 
always satisfied to a high degree of accuracy. It should be noted that this does not by itself 
imply the accuracy of the results, but rather acts as a consistency check on the numerical 
implementation. 

The far field can also be related to the total mean second-order drift force in the x direction. 
Such a formula was derived by Thomas [4] by considering the conservation of momentum 
flux down the channel. A more direct derivation can be obtained by applying Green's theorem 
to ¢ and O¢/Ox and this can be found in McIver and Linton [20]. The resulting identity is 

Z fix = ~Pg A d 1 + sin-h2kh] 1 + Z  (IRql 2 -ITql 2) (2.32) 
j = l  q=O q 

and this was also used as a check on the numerical accuracy of our results. 

and 
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3. Small radius solution 

In this section an approximate solution will be derived under the assumptions that the radii 
of all the cylinders are small relative to the wavelength of the incident wave, and that the 
wavelength and channel width are of the same order of magnitude. If we write a for the largest 
cylinder radius, then this is equivalent to e - ka << 1, whilst kd = O(1). A consequence of 
these assumptions is that the cylinder radius is much less than the channel width. We will also 
assume that the cylinders are not close to the channel walls, so that [Vj[ << d, j = 1 , . . . ,  N. 
The method of solution is matched asymptotic expansions and follows closely that for the 
single cylinder case in II, Section 5. 

For the inner region around cylinder j ,  extending to distances rj << k -  I, scaled coordinates 
are defined by 

~j x - xj  y - yj rj 
- - - - ,  ~ ? j - - - ,  p j = - - .  (3.1) 

a a a 

When written in terms of these coordinates, the inner potential ¢ (~j, ~j) - ¢ (x, y) is seen to 
satisfy 

02¢ 02¢ 
+ + = 0 (3 .2)  

in the fluid region and the body boundary condition 

0 ¢ _  O¢_2_ 0 {eiX~+ie~} onpj=a'-~, (3.3) 
Opj cOpj COpj 

where X j  = kxj  = O(1) and ~ = aj/a.  Expanding the body boundary condition in powers 
of e leads to 

0¢ 
I j ( i e c o s O j - e E ~ c o s 2 O J - 2 i e 3 ~ j 2 c o s 3 0  j + . . . )  onpj=a-~,  (3.4) 

Opj 

where Ij is given by (2.6). The leading-order inner solution must satisfy the first approxima- 
tions to (3.2) and (3.4) and is given by 

¢0)  = ieIj~j 2c°s Oj. (3.5) 
pj 

Here ¢(l) denotes the inner solution expanded to order ~ in e. 
In the outer region, at distances rj >> a, j = 1 , . . . ,  N, scaled outer coordinates are defined 

by 

X = kx, Y = ky, Rj  = krj (3.6) 

and the outer solution ko(X, Y) - ¢(x, y) must satisfy all the conditions of the problem, 
except the body boundary condition. The outer solution will be constructed from the channel 
multipoles given in the Appendix, but now expressed in terms of the outer variables. When 
expressed in terms of the outer variables (3.5) gives 

• 2 .~.2c°s.Oj (3.7) ¢(1,2) = le I ja s Rj  ' 
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where Cg,m) denotes the inner solution to order g in e rewritten in terms of the outer variables 
and expanded to order m. A similar notation is used for the outer potential. Thus ~(,n) denotes 
the order m outer solution which when rewritten in terms of the inner variables and expanded 
to order g is denoted by q2 (re,e) . The matching principle then requires that ¢(~,,n) = ~(m,e), 
see for example Crighton and Leppington [21]. 

The expansion (3.7) indicates that the leading-order outer solution is at O(e 2) and will 
contain terms no more singular than Rj -1. Thus 

N 

kO (2) = e 2 E ( A t ~  + Z { ~  + B{~I" ) (3.8) 
j = l  

where q~m, CJm are channel multipoles and 4 ,  a{, B{ are constants to be found from the 
matching. From (A. 1) and (A.2), using the small argument expansions of the Bessel functions 
that are given by Abramowitz and Stegun ([16], p. 360), we understand that the leading-order 
terms in the inner expansion of (3.8) come from the dipole singularities at cylinder j .  In 
particular 

@(2,1) : e2 {A~ [2c. °s-0p.] + [2sin0p] 
L 7rlepp j B~ L 7rie-----~p j } 

so that matching with (3.7) gives 

1 ~ 2  A~ = - ~ T r l p a p  , BI~ = O. 

(3.9) 

(3.10) 

Using (A. 1), (A.2), (A. 14) and (A. 15), we can show that the inner expansion of (3.8) about 
cylinder p continues as 

k0(2'3) = eE{A~[l+2i(  T + C) +apO0 + ~epvfl~ p sin0pl_ 

1 2 2 i 
--~Trlp~ ~riepp + -epprr log epp 

l ( i  )] +~epp 1 - - (1  - 2C + 21og2) + aPlll cosOp 
71" 

q-~ AJo Cg~+dP+~epp((Cg, + Op+(Dol +flgl)sinO p 
j=l 
#p 

1 2( jp " le, ~ ¢(Cjp+ cr{~)cOS0p + (D{P+ f~{~)sin0p)] } -~Trlp~j Cl° + a~lg + 2 ~'Ptt l l  

(3.11) 

where C = 0.5772... is Euler's constant. This expansion contains terms at orders e, e 2 log e, 
e 2, e 3 log e and e 3 which indicates the terms that need to be included in the order e 3 inner 
solution, the procedure for determining this inner solution follows very closely that given in 
II, Section 5, for the single cylinder case; consequently only the result is given here, namely 
that 

¢(3) = ielp~p2COSOp +Qoe21oge+e logpp-ap | 
Pp 
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{ i - - 2 [  ap cos30p ~pp2cosOp (7 )] 
+e 3 ~Ipap pp log pp cos Op + - 12p3 + Pp + log h~p 

+Qs + (pp + ~P2~ (Q6cosOp + Q7sinOp) ] (3.12) 

where Qi, i = 0 , . . . ,  7, are constants to be determined. Expanding in the way described above, 
we have 

¢ ( 3 , 2 ) =  ielp~2cosOp w Qoe21oge w e2 {Qi w l_ip~21ogpp} 
pp 2 

+e 3 log e{Q2 + pp(Q3 cos0p + Q4 sin 0p)} 
f i - 2  ) 

+e 3 pp  ogp cosO  + p ; e 6  cos + 07 sin (3.13) 

and then matching ~b (3'2) with XI/(2'3) we obtain: 

7ri ipg.~p 2 (3.14) AP = - ' T  ' 

Qo = 2i  Ag, (3.15) 
71" 

N 
QI : A p [1 + -~--(2i'c- log 2) + < ]  + ~-'~ Mr,":'JP,.OL,.,oo + do~ - 2i(Cfg + ~ ) ] ,  

j=l 
¢p 

(3.16) 

Q2 = O, (3.17) 

2 p 
Q3 : - Ao, 71- 

(3.18) 

Q4 = o~ (3.19) 

Q6 = - i A g  [ 1 -  -Tr i(1 - 2C AoroJPa- 2i(C¢l ° a~l~) ], + 21og2) + C~ll] + ~-~ J T t"01 " 4 ~  -- + 
j=l 
eP (3.20) 

l a p  ~p N A~ jp JP 2i(D{~ JP 
Q7 = 2--o.ol + Y~ -~- [Dol + fl~l - + fill )]" 

j= l  
ep 

(3.21) 

Note that Q5 is undetermined at this stage of the matching, but such constant terms in the 
inner potential do not contribute to the forces given below. On the other hand, they would 
contribute to higher-order forces such as the drift force on individual cylinders, so to this level 
of approximation nothing can be said about the effect of the channel on this drift force. 
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The first-order forces on the cylinders are given by (2.18). If we substitute from (3.12) and 
use the result 

4pgAtanhkh 4pgAtanhkh 7r(kap) 2 [ (kap)----~2 logkap 
FP =- k2H~ (kap) = k 2 2i 1 2 

~r(kap)2 (1+ i (1+ 2 C -  21°g2)) 7r (3.22) 

then we obtain the force ratios 

= 1 rr(ka,)2a~l, r j~l Ij 2 jp " 2i(C¢1 p <~)][ 
4i - -~ ~p(kaj) [C~I  -~- C~o~ --  "Jr- 

#p 

(3.23) 

(kav)2fl~ ' + ~ Ij 2 jp j p _  2i(D{1 p j=l ~p(kaj)[Dol + flgl + • 

#p 

(3.24) 

Methods for the efficient computation of the coefficients aanP m and f l ~  are discussed in the 
Appendix. 

4. Results 

There are a large number of parameters in the problem and it will be helpful if we restrict 
our attention to some specific geometries. In an effort to study as realistic a situation as 
possible, we will only consider the case when all the cylinders have equal radius. Results 
for three different configurations are presented below. These correspond to two cylinders 
on the channel centreline, two cylinders placed symmetrically about the centreline and four 
cylinders arranged in a square, again symmetrically placed in the channel. In all cases the 
ratio a/d is fixed at 1/12 and the separation between the cylinder axes, s/d, is fixed at 1/2. 
The four-cylinder case then corresponds to that considered by Kashiwagi [11], though in his 
case the cylinders were truncated. The three geometries described above will be referred to 
as geometries 1, 2 and 3, respectively, and they are illustrated in Figure 2. The numbers in 
the figures are used in the text to refer to the individual cylinders. All the curves for forces 
and pressures are plotted against kd/rr in the range 0 < kd/rr < 4 which is equivalent to 
0 < ka < 1.05 or oo > A/a > 6 where A is the wavelength of the incident wave. 

We begin with the simplest to calculate, and least affected by the channel walls, of the 
hydrodynamic quantities, namely the first-order forces given by (2.19). Results for first-order 
forces on arrays of two cylinders are given by Butler and Thomas [9, figures 4 and 6], but our 
computations suggest that these are in error. 

Figure 3 shows the first-order force in the x-direction on both the front and back cylinders 
for geometry 1. The quantity plotted is the ratio of the force on the cylinder in the channel 
and the force that the cylinder would experience if the channel walls were absent. The latter 
was computed using the method described in Linton and Evans [15]. The effect of the channel 
appears to be greater for higher wavenumbers and this may be explained as due to the 
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Figure 2. Sketch of the different geometries considered 

increased influence of reflections from the channel walls at short wavelengths. The accuracy 
of the solution obtained using matched asymptotic expansions, given by (3.23), is shown in 
Figure 4 for the front cylinder in this case. The figure clearly demonstrates how the solution 
breaks down as the wavenumber increases, but the low wavenumber results give confidence 
in the results computed using the exact method. 

For geometry 2 the first-order force ratios in the x-direction on the two cylinders are equal 
and do not differ from unity by more than 3% over the entire range of incident wavenumbers. 
For geometry 3 the forces on cylinders 3 and 4 are equal to those on cylinders 1 and 2, 
respectively, and these are shown in Figure 5. The behaviour is qualitatively similar to that 
shown in Figure 3. The cylinders are now off the channel centreline and this is the reason for 
the effect of the resonances at kd = (2n - 1)7r/2. 

The relative effect of the channel walls on the first-order force in the y-direction is much 
more pronounced than on that in the x-direction, though the forces involved are much smaller. 
One example will suffice and this is provided by Figure 6 in which accurate and approximate 
solutions for the y-force on one of the front cylinders in geometry 3 is shown. It is clear that 
the channel resonances have an enormous effect on the force in the y-direction, particularly 
that at kd = 7r, where the resonance considerably affects the force over a wide range of 
wavenumbers around the resonance value. The approximate solution obtained from (3.24) is 
again very accurate for small kd, though it falls to pick up the abnormal behaviour at the 
antisymmetric cut-off values. 
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Both Thomas [4] and McIver [22] make the point that in the case of a single cylinder 
in a channel, the influence of the tank walls on the first-order force in the z-direction is 
significantly less than that on the actual pressures experienced on the cylinder surface. The 
pressure on the body is directly proportional to the potential ~b which can be computed very 
simply from (2.17). Again we non-dimensionalize by dividing by the pressure that would be 
experienced if the cylinder array were in the open sea. Figure 7 shows the effect of the channel 
walls on the pressures around each cylinder for geometry 1 when the wavenumber is given 
by ka = 0.4(kd/Tr _~ 1.53). Owing to the symmetry of the geometry, the curves are plotted 
in the range 0 < 0 < 7r, where 0 = 0 corresponds to the back of each cylinder and 0 = 7r the 
front. The first-order force ratio at this wavenumber is seen from Fig. 3 to be very close to 
unity and thus these results are in accordance with previous studies. 

In order to aid anyone trying to reproduce our numerical results, a list of values of the 
first-order force in the z-direction on cylinder 1 in geometries 1 and 3 is given in Table 1. 
Values are given for both the channel case and the open-sea case, each non-dimensionalized 
with respect to the force on a single cylinder in isolation. The curves shown in Figures 3 and 
5 are ratios of these values. 

A quantity of particular interest for the problem considered in this paper is the mean 
second-order drift force which can be computed via a near-field integration leading to (2.25) 
or, if only the total drift force in the z-direction is required, from the far-field reflection and 
transmission coefficients as in (2.32). This force, being steady rather than oscillatory in nature, 
is very important in the design of offshore structures. Extensive calculations of mean drift 
forces on arrays of cylinders in channel can be found in Mclver and Linton [20]. A very simple 
and powerful approximate method for the determination of these second-order forces based 
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Table 1. First order forces on cylinder 1 

Geometry 1 Geometry 3 
kd/Tr channel open sea channel open sea 

0.2 0 . 9 7 4 6  0 .9727  1 .0071 1.0017 
0.5 0 .9501  0 .9585  0.9579 0.9746 
0.8 0.9552 0 .9497  0 .9641  0.9553 
1.2 1 .0418  1 .0483  1 .1150  1.1190 
1.5 1 .1828  1 .1696  1 .2130  1.2259 
1.8 1 .1592  1 .1839  1 .1307  1.1290 
2.2 0 . 9 9 3 9  0 .9588  0 .8152  0.8158 
2.5 0 . 7 5 1 6  0 .7589  0 .6422  0.6566 
2.8 0.7192 0 .7513  0 .8605  0.8363 
3.2 1 .1023  1 .1062  1 .1774  1.2080 
3.5 1 . 2 8 0 4  1 .3135  1 .2231 1.2616 
3.8 1 .3178  1 .2752  1 .1790  1.1596 

on the plane-wave approximation is also given there. Since publication of  the above paper, a 
minor  error in our numerical  computations has come to light. The small spikes that occur  at 
half-integer values of  kd/rc in Figures 4 -9  of  that paper are erroneous. 

Here we shall indicate some typical behaviour by looking at results for  geometry 2. Figure 
8 shows both the x- and the y-force on cylinder 1 non-dimensionalized by the corresponding 
open-sea values. (The :r-force on cylinder 2 is clearly the same as that for  cylinder 1, whereas 
the y-force is equal and opposite.) A number of  interesting features are apparent. Firstly, the 
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behaviour in long waves of the x-direction force is fundamentally different to that of the 
cross-channel force. It should be noted that, although the x-direction force ratio gets very 
large as ks  --+ O, the actual values of the drift force are very small. Secondly, we can see that 
as in the case of the first-order force, the effect on the v-force is significantly more than that 
on the x-force. For the x-force the force-ratio is quite close to unity for much of the graph, but 
the effects of  the channel resonances is much larger than for the first-order forces. The curve 
for the y-force ratio is complicated by the fact that the open-sea drift force has two zeros in 
the range of wavenumbers plotted (at approximately kd/Tr = 1.7 and 3.4), which give rise to 
infinities in the force ratio plotted. 

Results for the mean second-order drift force have been computed previously by Williams 
and Vazquez [12]. They plot graphs of the drift-force, non-dimensionalized by pgadh2/4 and 
Figure 9 may be directly compared with their Figure 12. Reference to their figure shows that 
over most of  the frequency range the results are in very good agreement, though there are 
some discrepancies at and just above the cut-off value of ka = 27r/9. 

Finally, we turn out attention to the far-field and compute reflection and transmission 
coefficients, using (2.27) and (2.28). Butler and Thomas [9] computed these coefficients 
for various two-cylinder arrays and our results have been checked with theirs, good agree- 
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ment being achieved. Perhaps the most useful quantity to plot is the energy associated with 
each reflected and transmitted propagating mode. Thus, from (2.31) we plot tqlR q [2/eq and 
tq[Tq[2/eq, q = 0 , . . . ,  a. The curves in the figures then have the property that for any value of 
kd/Tr the values of the curves sum to unity. Another advantage of plotting the energy rather 
than the coefficients themselves is that it is easier to see that the energies (and hence the 
coefficients) are continuous across the cut-off frequencies. This problem is discussed in more 
detail in Linton and Evans [23]. 

In Figures 10 and 11 the reflected and transmitted energies are plotted over the range 
0 < kd/Tr < 3 for geometries 1 and 3. Owing to the symmetry of the geometries about the 
x-axis, Rq = Tq = 0 when q is odd. The cylinders in these examples are fairly small and not 
much energy is reflected back down the channel, particularly in long waves. Unsurprisingly, 
the four-cylinder array has more effect than the two-cylinder array. 

5. Conclusion 

The multipole method has been used to solve the full linear problem of the scattering of an 
incident plane wave in a channel by an arbitrary array of bottom-mounted vertical circular 
cylinders. This problem is of considerable practical importance from the point of view of 
performing model tests during the design of offshore structures. 

A simple formula for the velocity potential on the surfaces of the cylinders has been 
derived which makes the computation of pressures and forces straightforward. The method 
also makes the evaluation of far-field quantities, such as the reflection and transmission 
coefficients, extremely simple. Extensive results for the various quantities of interest have 
been given. 

An approximate solution to the problem, based on the assumption that the wavelength of 
the incident wave is long compared with the cylinder radii, has been derived, using matched 
asymptotic expansions. This leads to a simple method for calculating the first-order forces on 
the cylinders, which has been shown to be accurate when the non-dimensional wavenumber 
ka is less than about 0.5. This approximation is useful as a check on the results computed 
using the exact method. 
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Appendix A. Multipoles 

Multipoles suitable for the problem under discussion have been constructed previously in II. 
Thus equations (3.19)-(3.24) of II can be written 

c~n = Hn(krj)cosnOj + ~ (~JnmCOSmOj + ~JnmsinmOj)Jm(krj), (A.1) 
m = 0  

(3o 

CJn = Hn(krj)sinnOj + ~ (aJnm cos ta0 /+  b~m sinmOj)Jm(krj), (A.2) 
m----0 

where 

• em in-m-1 f_~ e -2kTd + cosh2kTyj 
(X3nm - 7r oo 3' sinh 2kTd cosh m r  cosh nT dr, (A.3) 
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/~Jnm - 2in-mTr f_,~ooo 7sinhsinh2kTYS2kTd sinh mT cosh n~- dr, (A.4) 

= emi n-m f_~ sinh2kTyj coshmTsinhnTdt, (A.5) aJm 
7r c¢ 7 sinh 2kTd 

2in-m+l f_~ e-2k~d _ cosh2kTy j 
- -  ~ __c¢ 3' sinh 2kTd sinh m r  sinh nr dt. (A.6) 

In these expressions T is such that 

{ ~(_1--t2) 1/2 t _ < l  (A.7) 
coshr  = t, s inhr  = 7 = (t 1) 1/2 t > 1 

and the path of integration runs above the poles on the negative real axis and below those on 
the positive real axis. Note that if m + n is odd a~r n = ~ m  = 0, whereas if m + n is even 
aSnm =/3Snm = 0. Also/3J0 = ~0  = 0. 

Techniques for numerically evaluating integrals of this type are discussed in I and II. In I, 
a method is described which consists of writing the contour integral as a sum of a principal- 
value integral plus the contribution from the finite number of poles on the real axis. A 
formula (Equation (2.61)) is then given which allows this principal-value integral to be easily 
computed. An alternative procedure is given in II. Here a change of variable is introduced 
which moves all the singularities onto the imaginary axis. The path of integration can then 
be deformed back into the real axis, leaving an integral of a well-behaved complex-valued 
function of a real variable which is straightforward to compute. 

Formulas for multipoles singular at one point, (xj, yj), but expanded about another point, 
(xp, yp), can he obtained from integral representations for the multipoles (II, Equations (3.14) 
and (3.17)). We obtain, provided j ~ p, 

OO 

¢3 n = Hn(krj)cosnOj + ~ (aZnPmCosmO v + 3JnPmsinmOp)Jm(krp), (A.8) 
rn----0 

(X) 

¢3 n = Hn(krj)sinnOj + ~ (aJn~ cosmOp + tPnPmsinmOp)Jm(krp), (A.9) 
m=O 

where 

OflnPrn - -  emin-m-171" a-f~°~ e -2kTd cosh kT(y p3, sinh- yj)2kTd + cosh kT(y v + yj) 

eik(xj -xp)t cosh m r  cosh nT- dt, (A. 10) 

2i n-m f_'~¢ jp _ _ 
~ r n  7r oo 

e -2kTd sinh kT(yp - yj) + sinh kT(yp + yj) 
3' sinh 2kTd 

e ik(xj-xv)t sinh mT cosh nT- dr, (A.11) 

jp em in-m_ f _ ~  
anm = 7r oo 

e -2kTd sinh kT(yp - yj) - sinh kT(y p + yj) 
7 sinh 2kTd 

eik(xj-xv)t cosh m'r sinh n r  dr, (A.12) 
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b~Pm - emin-m+lTr j-['>°co e-EkTd c°sh kT(YP7 sinh- yj)2kTd- c°sh kT(yP + yj) 

eik(xj -xp)t sinh mT sinh nT dr. (A. 13) 

Note that f l~  = ~ = 0. We can expand the Hankel functions appearing in (A.8) and (A.9) 
in terms of (rp, Op), using Graf's addition theorem, (Abramowitz and Stegun [16], Equation 
9.1.79). We obtain 

c o  

+ fl~m) sinmOp]Jm(krp), j ~ p, = (nnm (A.14) ¢'n Z [(C~m + ~ )  cosm0p + JP J' 
m = 0  

c o  

[(E~i m + + (FJnm (A.15) = anm ) COS cJ ~ JP JP mop JP +b~Pm)sinmOp]J,n(krp), j C p, 
m=O 

where 

CJnPm = em[(-1)mHn+m(kRjp)COS(m + n)Tjp + Hn_m(kRjp) COS(m - n)Tjp], 

Jp (-1)"H.+.,(kRjp) sin(., +,~)Tjp + H._~(kRjp) sin(., ,~)Tjp, 

E ~  = ~.,[(-1)~U~+m(kRj~) sin(~ + n)'),j~ + U~_~(kn~p)sin(m - ,~)'),j~] 

and 

F.J~ = -(-1)mHn+m(kRjp)cos(m + n)Tjp + Un-m(knjp) cos(m - n)Tjp. 

The behaviour of ¢~n, c J  as Ixl --+ cx~ can also be obtained from II, equations (3.14) and 
(3.17). We define 

cn(t) = cos[nsin -1 t], sn(t) = sin[nsin -1 t], (A.16) 

t q = l -  ~ q = 0, 1 , . . . , a ,  (A.17) 

where a is an integer such that 

aTr < 2kd < (a + 1)Tr. (A.18) 

The following notation will be used. In bracketed pairs, if q is even, the upper element is 
meant, whereas if q is odd, the lower element is required. We then find that as x --+ -4-oo 

~ . -  ~ eqC2n(tq) ~cosqTryj/2d~ ~cosqTry/2d~e+ik(x_xj), q 
q=o kdtq [ sinq~ryfl2d J [ sinq~ru/2d j ' ( A . 1 9 )  

~n+l ~ ~:i ~ eqS2,~+l(tq) [cosqTryj/2d~ [cosqTry/2d~e+ik(x_xj)t q (A.20) 
q=o kdtq [ sinqTryfl2d J [ sinq~ru/2d J 

¢~n "~ q:i ~ 282n(tq) f-sinqTryj/2d~cosqTry/2d~e+ik(z_x~)t q 
q=l kdtq [ cosqTryj/2d J[sinqlry/2dJ ' (A.21) 
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and 

~b~n+l ,,., ~ 2C2n+l( tq)~-s inqTryj /2d~cosqTry/2d~e+ik(x_x~, t  q 

q=l kdtq [ cosqTryj/2d j [ sinqTry/2dJ 
(A .22)  
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